Comparison of a spiking neural network and an MLP for robust identification of generator dynamics in a multimachine power system

نویسندگان

  • Cameron Johnson
  • Ganesh K. Venayagamoorthy
  • Pinaki Mitra
چکیده

The application of a spiking neural network (SNN) and a multi-layer perceptron (MLP) for online identification of generator dynamics in a multimachine power system are compared in this paper. An integrate-and-fire model of an SNN which communicates information via the inter-spike interval is applied. The neural network identifiers are used to predict the speed and terminal voltage deviations one time-step ahead of generators in a multimachine power system. The SNN is developed in two steps: (i) neuron centers determined by offline k-means clustering and (ii) output weights obtained by online training. The sensitivity of the SNN to the neuron centers determined in the first step is evaluated on generators of different ratings and parameters. Performances of the SNN and MLP are compared to evaluate robustness on the identification of generator dynamics under small and large disturbances, and to illustrate that SNNs are capable of learning nonlinear dynamics of complex systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

Forecasting Gold Price Changes: Application of an Equipped Artificial Neural Network

The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...

متن کامل

Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)

This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...

متن کامل

Basic Issues in Identification Scheme of a Self-Tuning Power System Stabilizer

Power system stabilizers have been widely used and successfully implemented for the improvement of power system damping. However, a fixed parameter power system stabilizer tends to be sensitive to variations in generator dynamics so that, for operating conditions away from those used for design, the effectiveness of the stabilizer can be greatly impaired. With the advent of microprocessor techn...

متن کامل

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 22 5-6  شماره 

صفحات  -

تاریخ انتشار 2009